3.4.40 \(\int \frac {\tan ^4(e+f x)}{(a+b \tan ^2(e+f x))^{3/2}} \, dx\) [340]

3.4.40.1 Optimal result
3.4.40.2 Mathematica [C] (verified)
3.4.40.3 Rubi [A] (verified)
3.4.40.4 Maple [A] (verified)
3.4.40.5 Fricas [B] (verification not implemented)
3.4.40.6 Sympy [F]
3.4.40.7 Maxima [F]
3.4.40.8 Giac [F(-1)]
3.4.40.9 Mupad [F(-1)]

3.4.40.1 Optimal result

Integrand size = 25, antiderivative size = 123 \[ \int \frac {\tan ^4(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx=\frac {\arctan \left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{(a-b)^{3/2} f}+\frac {\text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{b^{3/2} f}-\frac {a \tan (e+f x)}{(a-b) b f \sqrt {a+b \tan ^2(e+f x)}} \]

output
arctan((a-b)^(1/2)*tan(f*x+e)/(a+b*tan(f*x+e)^2)^(1/2))/(a-b)^(3/2)/f+arct 
anh(b^(1/2)*tan(f*x+e)/(a+b*tan(f*x+e)^2)^(1/2))/b^(3/2)/f-a*tan(f*x+e)/(a 
-b)/b/f/(a+b*tan(f*x+e)^2)^(1/2)
 
3.4.40.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.

Time = 3.70 (sec) , antiderivative size = 250, normalized size of antiderivative = 2.03 \[ \int \frac {\tan ^4(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx=\frac {a \left (-a+b+\frac {(a-b) \sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}}}{\sqrt {2}}\right ),1\right )}{\sqrt {2}}-\frac {b \sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}} \operatorname {EllipticPi}\left (-\frac {b}{a-b},\arcsin \left (\frac {\sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}}}{\sqrt {2}}\right ),1\right )}{\sqrt {2}}\right ) \sec ^2(e+f x) \sin (2 (e+f x))}{\sqrt {2} (a-b)^2 b f \sqrt {(a+b+(a-b) \cos (2 (e+f x))) \sec ^2(e+f x)}} \]

input
Integrate[Tan[e + f*x]^4/(a + b*Tan[e + f*x]^2)^(3/2),x]
 
output
(a*(-a + b + ((a - b)*Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x 
]^2)/b]*EllipticF[ArcSin[Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + 
f*x]^2)/b]/Sqrt[2]], 1])/Sqrt[2] - (b*Sqrt[((a + b + (a - b)*Cos[2*(e + f* 
x)])*Csc[e + f*x]^2)/b]*EllipticPi[-(b/(a - b)), ArcSin[Sqrt[((a + b + (a 
- b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]/Sqrt[2]], 1])/Sqrt[2])*Sec[e + f 
*x]^2*Sin[2*(e + f*x)])/(Sqrt[2]*(a - b)^2*b*f*Sqrt[(a + b + (a - b)*Cos[2 
*(e + f*x)])*Sec[e + f*x]^2])
 
3.4.40.3 Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.11, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3042, 4153, 372, 398, 224, 219, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan ^4(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\tan (e+f x)^4}{\left (a+b \tan (e+f x)^2\right )^{3/2}}dx\)

\(\Big \downarrow \) 4153

\(\displaystyle \frac {\int \frac {\tan ^4(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \left (b \tan ^2(e+f x)+a\right )^{3/2}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 372

\(\displaystyle \frac {\frac {\int \frac {(a-b) \tan ^2(e+f x)+a}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)}{b (a-b)}-\frac {a \tan (e+f x)}{b (a-b) \sqrt {a+b \tan ^2(e+f x)}}}{f}\)

\(\Big \downarrow \) 398

\(\displaystyle \frac {\frac {(a-b) \int \frac {1}{\sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)+b \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)}{b (a-b)}-\frac {a \tan (e+f x)}{b (a-b) \sqrt {a+b \tan ^2(e+f x)}}}{f}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {\frac {b \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)+(a-b) \int \frac {1}{1-\frac {b \tan ^2(e+f x)}{b \tan ^2(e+f x)+a}}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a}}}{b (a-b)}-\frac {a \tan (e+f x)}{b (a-b) \sqrt {a+b \tan ^2(e+f x)}}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {b \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)+\frac {(a-b) \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{\sqrt {b}}}{b (a-b)}-\frac {a \tan (e+f x)}{b (a-b) \sqrt {a+b \tan ^2(e+f x)}}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {b \int \frac {1}{1-\frac {(b-a) \tan ^2(e+f x)}{b \tan ^2(e+f x)+a}}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a}}+\frac {(a-b) \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{\sqrt {b}}}{b (a-b)}-\frac {a \tan (e+f x)}{b (a-b) \sqrt {a+b \tan ^2(e+f x)}}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {\frac {b \arctan \left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{\sqrt {a-b}}+\frac {(a-b) \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{\sqrt {b}}}{b (a-b)}-\frac {a \tan (e+f x)}{b (a-b) \sqrt {a+b \tan ^2(e+f x)}}}{f}\)

input
Int[Tan[e + f*x]^4/(a + b*Tan[e + f*x]^2)^(3/2),x]
 
output
(((b*ArcTan[(Sqrt[a - b]*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]^2]])/Sqrt[a 
 - b] + ((a - b)*ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]^2] 
])/Sqrt[b])/((a - b)*b) - (a*Tan[e + f*x])/((a - b)*b*Sqrt[a + b*Tan[e + f 
*x]^2]))/f
 

3.4.40.3.1 Defintions of rubi rules used

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 372
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[(-a)*e^3*(e*x)^(m - 3)*(a + b*x^2)^(p + 1)*((c + d*x^2 
)^(q + 1)/(2*b*(b*c - a*d)*(p + 1))), x] + Simp[e^4/(2*b*(b*c - a*d)*(p + 1 
))   Int[(e*x)^(m - 4)*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[a*c*(m - 3) + 
 (a*d*(m + 2*q - 1) + 2*b*c*(p + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, 
e, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[m, 3] && IntBinomialQ[a 
, b, c, d, e, m, 2, p, q, x]
 

rule 398
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]) 
, x_Symbol] :> Simp[f/b   Int[1/Sqrt[c + d*x^2], x], x] + Simp[(b*e - a*f)/ 
b   Int[1/((a + b*x^2)*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f} 
, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4153
Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], 
 x]}, Simp[c*(ff/f)   Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2 + f 
f^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, 
n, p}, x] && (IGtQ[p, 0] || EqQ[n, 2] || EqQ[n, 4] || (IntegerQ[p] && Ratio 
nalQ[n]))
 
3.4.40.4 Maple [A] (verified)

Time = 0.07 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.48

method result size
derivativedivides \(\frac {-\frac {\tan \left (f x +e \right )}{a \sqrt {a +b \tan \left (f x +e \right )^{2}}}-\frac {\tan \left (f x +e \right )}{b \sqrt {a +b \tan \left (f x +e \right )^{2}}}+\frac {\ln \left (\sqrt {b}\, \tan \left (f x +e \right )+\sqrt {a +b \tan \left (f x +e \right )^{2}}\right )}{b^{\frac {3}{2}}}+\frac {\sqrt {b^{4} \left (a -b \right )}\, \arctan \left (\frac {b^{2} \left (a -b \right ) \tan \left (f x +e \right )}{\sqrt {b^{4} \left (a -b \right )}\, \sqrt {a +b \tan \left (f x +e \right )^{2}}}\right )}{\left (a -b \right )^{2} b^{2}}-\frac {b \tan \left (f x +e \right )}{\left (a -b \right ) a \sqrt {a +b \tan \left (f x +e \right )^{2}}}}{f}\) \(182\)
default \(\frac {-\frac {\tan \left (f x +e \right )}{a \sqrt {a +b \tan \left (f x +e \right )^{2}}}-\frac {\tan \left (f x +e \right )}{b \sqrt {a +b \tan \left (f x +e \right )^{2}}}+\frac {\ln \left (\sqrt {b}\, \tan \left (f x +e \right )+\sqrt {a +b \tan \left (f x +e \right )^{2}}\right )}{b^{\frac {3}{2}}}+\frac {\sqrt {b^{4} \left (a -b \right )}\, \arctan \left (\frac {b^{2} \left (a -b \right ) \tan \left (f x +e \right )}{\sqrt {b^{4} \left (a -b \right )}\, \sqrt {a +b \tan \left (f x +e \right )^{2}}}\right )}{\left (a -b \right )^{2} b^{2}}-\frac {b \tan \left (f x +e \right )}{\left (a -b \right ) a \sqrt {a +b \tan \left (f x +e \right )^{2}}}}{f}\) \(182\)

input
int(tan(f*x+e)^4/(a+b*tan(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)
 
output
1/f*(-tan(f*x+e)/a/(a+b*tan(f*x+e)^2)^(1/2)-tan(f*x+e)/b/(a+b*tan(f*x+e)^2 
)^(1/2)+1/b^(3/2)*ln(b^(1/2)*tan(f*x+e)+(a+b*tan(f*x+e)^2)^(1/2))+1/(a-b)^ 
2*(b^4*(a-b))^(1/2)/b^2*arctan(b^2*(a-b)/(b^4*(a-b))^(1/2)/(a+b*tan(f*x+e) 
^2)^(1/2)*tan(f*x+e))-b/(a-b)*tan(f*x+e)/a/(a+b*tan(f*x+e)^2)^(1/2))
 
3.4.40.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 225 vs. \(2 (109) = 218\).

Time = 0.79 (sec) , antiderivative size = 974, normalized size of antiderivative = 7.92 \[ \int \frac {\tan ^4(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx=\text {Too large to display} \]

input
integrate(tan(f*x+e)^4/(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="fricas")
 
output
[1/2*((a^3 - 2*a^2*b + a*b^2 + (a^2*b - 2*a*b^2 + b^3)*tan(f*x + e)^2)*sqr 
t(b)*log(2*b*tan(f*x + e)^2 + 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(b)*tan(f*x 
 + e) + a) + (b^3*tan(f*x + e)^2 + a*b^2)*sqrt(-a + b)*log(-((a - 2*b)*tan 
(f*x + e)^2 + 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a + b)*tan(f*x + e) - a)/ 
(tan(f*x + e)^2 + 1)) - 2*(a^2*b - a*b^2)*sqrt(b*tan(f*x + e)^2 + a)*tan(f 
*x + e))/((a^2*b^3 - 2*a*b^4 + b^5)*f*tan(f*x + e)^2 + (a^3*b^2 - 2*a^2*b^ 
3 + a*b^4)*f), -1/2*(2*(a^3 - 2*a^2*b + a*b^2 + (a^2*b - 2*a*b^2 + b^3)*ta 
n(f*x + e)^2)*sqrt(-b)*arctan(sqrt(b*tan(f*x + e)^2 + a)*sqrt(-b)/(b*tan(f 
*x + e))) - (b^3*tan(f*x + e)^2 + a*b^2)*sqrt(-a + b)*log(-((a - 2*b)*tan( 
f*x + e)^2 + 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a + b)*tan(f*x + e) - a)/( 
tan(f*x + e)^2 + 1)) + 2*(a^2*b - a*b^2)*sqrt(b*tan(f*x + e)^2 + a)*tan(f* 
x + e))/((a^2*b^3 - 2*a*b^4 + b^5)*f*tan(f*x + e)^2 + (a^3*b^2 - 2*a^2*b^3 
 + a*b^4)*f), 1/2*(2*(b^3*tan(f*x + e)^2 + a*b^2)*sqrt(a - b)*arctan(-sqrt 
(b*tan(f*x + e)^2 + a)/(sqrt(a - b)*tan(f*x + e))) + (a^3 - 2*a^2*b + a*b^ 
2 + (a^2*b - 2*a*b^2 + b^3)*tan(f*x + e)^2)*sqrt(b)*log(2*b*tan(f*x + e)^2 
 + 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(b)*tan(f*x + e) + a) - 2*(a^2*b - a*b 
^2)*sqrt(b*tan(f*x + e)^2 + a)*tan(f*x + e))/((a^2*b^3 - 2*a*b^4 + b^5)*f* 
tan(f*x + e)^2 + (a^3*b^2 - 2*a^2*b^3 + a*b^4)*f), ((b^3*tan(f*x + e)^2 + 
a*b^2)*sqrt(a - b)*arctan(-sqrt(b*tan(f*x + e)^2 + a)/(sqrt(a - b)*tan(f*x 
 + e))) - (a^3 - 2*a^2*b + a*b^2 + (a^2*b - 2*a*b^2 + b^3)*tan(f*x + e)...
 
3.4.40.6 Sympy [F]

\[ \int \frac {\tan ^4(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {\tan ^{4}{\left (e + f x \right )}}{\left (a + b \tan ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \]

input
integrate(tan(f*x+e)**4/(a+b*tan(f*x+e)**2)**(3/2),x)
 
output
Integral(tan(e + f*x)**4/(a + b*tan(e + f*x)**2)**(3/2), x)
 
3.4.40.7 Maxima [F]

\[ \int \frac {\tan ^4(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\tan \left (f x + e\right )^{4}}{{\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(tan(f*x+e)^4/(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="maxima")
 
output
integrate(tan(f*x + e)^4/(b*tan(f*x + e)^2 + a)^(3/2), x)
 
3.4.40.8 Giac [F(-1)]

Timed out. \[ \int \frac {\tan ^4(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx=\text {Timed out} \]

input
integrate(tan(f*x+e)^4/(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="giac")
 
output
Timed out
 
3.4.40.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\tan ^4(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {{\mathrm {tan}\left (e+f\,x\right )}^4}{{\left (b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a\right )}^{3/2}} \,d x \]

input
int(tan(e + f*x)^4/(a + b*tan(e + f*x)^2)^(3/2),x)
 
output
int(tan(e + f*x)^4/(a + b*tan(e + f*x)^2)^(3/2), x)